中学受験の算数に出てくる平均算の解き方を解説

平均算の解き方(クラスの平均点の問題)

中学受験算数の文章題に出てくる平均算のオリジナル問題と解き方の解説ページです。

 

平均算とは、文字通り平均を求めるものが、中学入試の文章題では、「全体の合計÷個数」で平均を求めるようなカンタンな問題はあまり出題されません。

 

平均をもとに全体の人数などを求める問題が多くなっています。
今回はその中でも定番のクラスの平均点に関する問題について解説します。

 

平均算のオリジナル問題(クラスの平均点)

 

6年1組で算数のテストを行ったところ、女子の平均点は男子の平均点よりも14点高く、クラス全体の平均点よりも9点高くなりました。6年1組の人数は全部で28人です。男子、女子それぞれの人数を求めなさい。

 

中学入試でも似たような問題が出たことがあります。
平均点が何点かは分からなくても、全体との差からそれぞれの人数を求めることが出来ます。

 

順番に見ていきましょう。

 

平均算(クラスの平均点)の解き方

問題文から男子、女子それぞれの平均点とクラス全体の平均点の差を求めます。

  • 女子の平均点 … クラスの平均点より9点高い(問題文から)
  • 男子の平均点 … クラスの平均点より5点低い

女子の平均点がクラスの平均よりも9点高く、男子よりも14点高いということは、男子の平均点はクラスの平均点よりも5点低い(14−9)ということになります。

 

平均算に使える公式

男子と女子の人数の比率は、男子と女子の平均点との差から求められます。

男子の人数×男子の平均点との差=女子の人数×女子の平均点との差

これを問題にあてはめると…

男子の人数×5点=女子の人数×9点

となります。これが成り立つ、男子と女子の人数の比率は9:5です。
(男子の人数「9」×5点=女子の人数「5」×9点)

 

クラス全体の人数は28人と分っているので、これを5:9に分ければ答えが出ます。

 

28 × 5 / (5+9) =10人(女子の人数)
28 × 9 / (5+9) =18人(男子の人数)

 

答え.男子18人、女子10人

 

平均算の練習問題(1)

全部で32人の児童がいるクラスで理科のテストを行ったところ、男子の平均点は女子の平均点よりも8点高く、クラス全体の平均点よりも3点高くなりました。男子、女子それぞれの人数を求めなさい。

 

解答はコチラ ⇒ 平均算練習問題の解答

PR


 
スランプ克服法 動画で学ぶ 成績を一気に上げる 鶴亀算の解き方 植木算の解き方