差集算の問題と解き方を解説

差集算の問題と解き方解説

差集算には、いくつかの決まったパターンがあります。
典型的な問題でこのパターンを覚えてしまいましょう。

 

差集算の問題(1)ものを配るパターン

クラスひとりひとりに4個ずつビー玉を配ると56個あまり、6個ずつだと4個あまります。クラスの人数は何人でビー玉は全部で何個あるでしょうか。

ものを配るパターンの差集算です。
配る個数を変えると、あまりの個数が変わります。

 

この問題は配った数のちがいに着目します。
最初は4個ずつで、次は6個ずつなので、そのちがい(差)は6−4=2個ですね。

 

次にあまりのちがいに着目します。
最初は56個で、次は4個なので、そのちがい(差)は56−4=52個です。

 

仮にクラスの人数が1人だとすると、あまりの個数は、6−4=2個しか変わりません。

 

これが2人だと、1人分で2個変わるので、2個×2人で4個変わります。
これが3人だと、1人分で2個変わるので、2個×3人で6個変わります。
これが4人だと、1人分で2個変わるので、2個×4人で8個変わります。

 

…と考えることができますね。
あまりは56−4=52個変わりました。

 

ということは、クラスの人数は…52÷2=26人となります。

 

ビー玉の数はどちらで計算しても同じです。

 

「4個ずつビー玉を配ると56個あまり」で計算するなら…
4×26=104個であまりが56個なので、104+56=160個。

 

「6個ずつビー玉を配ると4個あまり」で計算するなら…
6×26=156個であまりが4個なので、156+4=160個。

 

答え.クラスの人数26人、ビー玉の数160個

 

差集算の問題(2)入れ替わるパターン

1つ50円の品物Aと1つ70円の品物Bをあわせて30個買いましたが、本来買うべき品物Aの個数と品物Bの個数を反対にしてしまったため、本来の値段よりも120円安くなりました。品物Aと品物Bをそれぞれ何個買ったのでしょうか。

ものの値段や個数が入れ替わってしまうパターンの差集算です。

 

問題文が長いときはポイントを整理するのがコツです。

  • 品物A…1個50円
  • 品物B…1個70円
  • 品物A+品物B=30個
  • 個数が入れ替わったら120円安くなった

では、順番に考えていきます。

 

品物Aと品物Bの値段の差は70円-50円=20円ですね。品物Aと品物Bの個数の差が1個のときに合計金額で20円の差ができることになります。

 

「個数が入れ替わったら120円安くなった」ので、1個で20円の差ということは、120÷20=6個入れ替わったことがわかります。

 

「品物A+品物B=30個」なので、品物Aと品物Bで6個差ができるには30−6=24で、この24を2で割った数字(12)が少ないほうの数となります。

 

「安くなった」というのは、値段が高いほうの数が本来の数よりも少なく買ったからです。ということは品物Bが12個で、品物Aが18個となります。

 

確認

品物Aを18個買うと、50円×18個=900円。
品物Bを12個買うと、70円×12個=840円。
あわせて900+840=1740円。

 

本来の数は反対なので、
品物Aを12個買うと、50円×12個=600円。
品物Bを18個買うと、70円×18個=1260円。
あわせて600+1260=1860円。

 

差は1860円-1740円で120円。
あってますね。

 

答え.品物Aを18個、品物Bを12個買った

ツルカメ算、旅人算、流水算など特殊算の解説動画が充実

 

小5 算数(応用講座)「第20講 相当算@ もとになる数を求める」、小6 算数(応用講座)「第7講 通過算@ 通過するために動く長さ」など、いろいろなパターンの特殊算を学ぶことができます!
スタサプ 小学講座

page top